Acta Crystallographica Section E

Structure Reports Online

Vukadin M. Leovacb

ISSN 1600-5368

Ivana Radosavljević Evans,^a*

Katalin Mészáros Szécsényib and

^aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and ^bFaculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia and Montenegro

Correspondence e-mail: ivana.radosavlievic@durham.ac.uk

Kev indicators

Single-crystal X-ray study T = 120 KMean $\sigma(\text{C-C}) = 0.001 \text{ Å}$ R factor = 0.040 wR factor = 0.100Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(Hydroxymethyl)-3,5-dimethylpyrazole

The structure of the title compound, $C_6H_{10}N_2O$, has been determined from single crystals obtained by recrystallization from acetone. Intermolecular $O-H\cdots N$ hydrogen bonding gives rise to $R_2^2(10)$ dimers.

Received 31 January 2005 Accepted 4 February 2005 Online 12 February 2005

Comment

1-(Hydroxymethyl)-3,5-dimethylpyrazole (HL), (I), was first synthesized by a reaction of 3,5-dimethylpyrazole with paraformaldehyde (Driessen, 1982). HL can act as a chelating ligand, as shown by the examples of four isomorphous cubanetype cluster coordination compounds of the formula $[MXL(\text{EtOH})_4]$ ($M = \text{Co}^{\text{II}}$, Ni^{II} , X = Cl, Br; Paap *et al.*, 1985), where the deprotonated species acts as a bidentate ligand, coordinating the metals through its pyridine N atom and the methoxy O atom. With a metal with different coordination preferences, such as Pd, HL acts as a monodentate ligand through the pyrazole N atom, forming a square-planar complex (Boixassa *et al.*, 2002).

$$H_3C$$
 CH_3 CH_2 HO (I)

The molecular structure of (I) is shown in Fig. 1. The substituted pyrazole ring is essentially planar, the largest displacement being 0.01 Å for C4. The O1–C1–N1–N2 torsion angle is 90.19 (9)°. The structure is stabilized by intermolecular O–H···N hydrogen bonding between adjacent molecules $[H \cdot \cdot \cdot N = 1.89 (2) \text{ Å}, O \cdot \cdot \cdot N = 2.760 (1) \text{ Å}$ and O–H···N = 171.0 (2)°]. These interactions give rise to dimers

Figure 1 H10

The molecular structure of (I) and the atom-numbering scheme.

Displacement ellipsoids are drawn at the 50% probability level.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

with an $R_2^2(10)$ hydrogen-bonding motif (Etter *et al.*, 1990) (Fig. 2).

Experimental

Needle-shaped clear single crystals of (I) were obtained by recrystallization of the commercial product (Aldrich) from acetone.

Crystal data

$C_6H_{10}N_2O$	$D_x = 1.238 \text{ Mg m}^{-3}$	
$M_r = 126.16$	Mo $K\alpha$ radiation	
Monoclinic, $P2_1/n$	Cell parameters from 6570	
a = 7.2877 (2) Å	reflections	
b = 11.9265 (3) Å	$\theta = 3.1 – 34.3^{\circ}$	
c = 8.1586 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$	
$\beta = 107.396 (1)^{\circ}$	T = 120 K	
$V = 676.68 (3) \text{ Å}^3$	Needle, white	
Z = 4	$0.80 \times 0.20 \times 0.20 \text{ mm}$	

Data collection

Bruker SMART CCD area-detector	2742 independent reflections
diffractometer	2113 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.019$
Absorption correction: multi-scan	$\theta_{\rm max} = 34.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.92, T_{\max} = 0.98$	$k = -18 \rightarrow 19$
13356 measured reflections	$l = -12 \rightarrow 12$

Refinement

,	
Refinement on F^2	$1.31T_2(x)$] where T are the
$R[F^2 > 2\sigma(F^2)] = 0.040$	Chebychev polynomial terms and
$wR(F^2) = 0.100$	$x = F_c/F_{\text{max}}$ (Watkin, 1994;
S = 1.00	Prince, 1982)
2113 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
122 parameters	$\Delta \rho_{\text{max}} = 0.40 \text{ e Å}^{-3}$
All H-atom parameters refined	$\Delta \rho_{\min} = -0.31 \text{ e Å}^{-3}$
$w = [1 - (F_o - F_c)/6\sigma(F_o)^2]^2/$	
$[3.44T_0(x) + 4.59T_1(x) +$	

Table 1 Selected geometric parameters (Å, °).

O1-C1	1.4007 (10)	C2-C5	1.4918 (13)
N1-C1	1.4530 (11)	C3-C2	1.3814 (13)
N1-C2	1.3568 (11)	C3-C4	1.4073 (12)
N2-N1	1.3627 (10)	C6-C4	1.4934 (12)
N2-C4	1.3362 (10)		
N1-N2-C4	105.40 (7)	C3-C2-N1	106.36 (7)
N2-N1-C1	119.71 (7)	C3-C2-C5	131.14 (8)
N2-N1-C2	111.90 (7)	N1-C2-C5	122.49 (8)
C1-N1-C2	128.31 (7)	C6-C4-C3	128.72 (8)
N1-C1-O1	112.93 (7)	C6 - C4 - N2	120.72 (8)
C2-C3-C4	105.78 (7)	C3-C4-N2	110.55 (7)

H atoms were found in a difference Fourier map and refined using an isotropic approximation. Refined C—H bond lengths are in the range 0.95 (2)–1.04 (2) Å and the O—H bond length is 0.88 (2) Å.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *ATOMS* (Dowty, 2000); software used to prepare material for publication: *CRYSTALS*.

This work was financed in part by the Ministry of Science and Environmental Protection of the Republic of Serbia (project No. 1318 – Physicochemical, structural and biological investigation of complex compounds). IRE thanks the EPSRC for an Academic Fellowship.

Figure 2
The hydrogen bonding (dashed lines) in (I).

Figure 3
Two views of the packing scheme in (I).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). *J. Appl. Cryst.* 27, 435.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Boixassa, A., Pons, J., Virgili, A., Solans, X., Font-Bardia, M. & Ros, J. (2002). Inorg. Chim. Acta, 340, 49–55.

Bruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.

Driessen, W. L. (1982). Recl Trav. Chim. Pays-Bas, 101, 441-443.

Etter, M. C., Macdonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Paap, F., Bouwman, E., Driessen, W. L., de Graaf, R. A. G. & Reedijk, J. (1985). J. Chem. Soc. Dalton Trans. pp. 737–741.

Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.

Shape Software (2000). ATOMS. Version 5.1. Shape Software, Kingsport, Tennessee, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Watkin, D. J. (1994). Acta Cryst. A50, 411–437.