Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ivana Radosavljević Evans, ${ }^{\text {a* }}$
Katalin Mészáros Szécsényi ${ }^{\text {b }}$ and Vukadin M. Leovac ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and ${ }^{\mathbf{b}}$ Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000
Novi Sad, Serbia and Montenegro
Correspondence e-mail:
ivana.radosavljevic@durham.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.040$
$w R$ factor $=0.100$
Data-to-parameter ratio $=17.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(Hydroxymethyl)-3,5-dimethylpyrazole

The structure of the title compound, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$, has been determined from single crystals obtained by recrystallization from acetone. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding gives rise to $R_{2}^{2}(10)$ dimers.

Comment

1-(Hydroxymethyl)-3,5-dimethylpyrazole (HL), (I), was first synthesized by a reaction of 3,5 -dimethylpyrazole with paraformaldehyde (Driessen, 1982). HL can act as a chelating ligand, as shown by the examples of four isomorphous cubanetype cluster coordination compounds of the formula $\left[M X L(\mathrm{EtOH})_{4}\right]\left(M=\mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}, X=\mathrm{Cl}, \mathrm{Br}\right.$; Paap et al., 1985), where the deprotonated species acts as a bidentate ligand, coordinating the metals through its pyridine N atom and the methoxy O atom. With a metal with different coordination preferences, such as $\mathrm{Pd}, \mathrm{H} L$ acts as a monodentate ligand through the pyrazole N atom, forming a square-planar complex (Boixassa et al., 2002).

(I)

The molecular structure of (I) is shown in Fig. 1. The substituted pyrazole ring is essentially planar, the largest displacement being $0.01 \AA$ for C 4 . The $\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$ torsion angle is $90.19(9)^{\circ}$. The structure is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding between adjacent molecules $[\mathrm{H} \cdots \mathrm{N}=1.89(2) \AA, \mathrm{O} \cdots \mathrm{N}=2.760$ (1) \AA and $\left.\mathrm{O}-\mathrm{H} \cdots \mathrm{N}=171.0(2)^{\circ}\right]$. These interactions give rise to dimers

Figure 1

The molecular structure of (I) and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 31 January 2005
Accepted 4 February 2005
Online 12 February 2005
with an $R_{2}^{2}(10)$ hydrogen-bonding motif (Etter et al., 1990) (Fig. 2).

Experimental

Needle-shaped clear single crystals of (I) were obtained by recrystallization of the commercial product (Aldrich) from acetone.
Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$

$M_{r}=126.16$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=7.2877$ (2) А
$b=11.9265(3) \AA$
$c=8.1586$ (2) \AA
$\beta=107.396(1)^{\circ}$
$V=676.68(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.92, T_{\text {max }}=0.98$
13356 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.100$
$S=1.00$
2113 reflections
122 parameters
All H -atom parameters refined
$w=\left[1-\left(F_{o}-F_{c}\right) / 6 \sigma\left(F_{o}\right)^{2}\right]^{2} /$
$\left[3.44 T_{0}(x)+4.59 T_{1}(x)+\right.$
$D_{x}=1.238 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6570
reflections
$\theta=3.1-34.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Needle, white
$0.80 \times 0.20 \times 0.20 \mathrm{~mm}$

2742 independent reflections
2113 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=34.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-18 \rightarrow 19$
$l=-12 \rightarrow 12$
$\left.1.31 T_{2}(x)\right]$ where T are the Chebychev polynomial terms and $x=F_{c} / F_{\text {max }}$ (Watkin, 1994; Prince, 1982)
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.4007(10)$	$\mathrm{C} 2-\mathrm{C} 5$	$1.4918(13)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.4530(11)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.3814(13)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.3568(11)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.4073(12)$
$\mathrm{N} 2-\mathrm{N} 1$	$1.3627(10)$	$\mathrm{C} 6-\mathrm{C} 4$	$1.4934(12)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.3362(10)$		
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 4$	$105.40(7)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$106.36(7)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1$	$119.71(7)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 5$	$131.14(8)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2$	$111.90(7)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 5$	$122.49(8)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$128.31(7)$	$\mathrm{C} 6-\mathrm{C} 4-\mathrm{C} 3$	$128.72(8)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$112.93(7)$	$\mathrm{C} 6-\mathrm{C} 4-\mathrm{N} 2$	$120.72(8)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$105.78(7)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	$110.55(7)$

H atoms were found in a difference Fourier map and refined using an isotropic approximation. Refined $\mathrm{C}-\mathrm{H}$ bond lengths are in the range 0.95 (2)-1.04 (2) \AA and the $\mathrm{O}-\mathrm{H}$ bond length is 0.88 (2) \AA.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.

This work was financed in part by the Ministry of Science and Environmental Protection of the Republic of Serbia (project No. 1318 - Physicochemical, structural and biological investigation of complex compounds). IRE thanks the EPSRC for an Academic Fellowship.

Figure 2
The hydrogen bonding (dashed lines) in (I).

Figure 3
Two views of the packing scheme in (I).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Boixassa, A., Pons, J., Virgili, A., Solans, X., Font-Bardia, M. \& Ros, J. (2002). Inorg. Chim. Acta, 340, 49-55.
Bruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.
Driessen, W. L. (1982). Recl Trav. Chim. Pays-Bas, 101, 441-443.
Etter, M. C., Macdonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Paap, F., Bouwman, E., Driessen, W. L., de Graaf, R. A. G. \& Reedijk, J. (1985). J. Chem. Soc. Dalton Trans. pp. 737-741.

Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Shape Software (2000). ATOMS. Version 5.1. Shape Software, Kingsport, Tennessee, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Watkin, D. J. (1994). Acta Cryst. A50, 411-437.

